# ConvNeXt Backbone
Upernet Swin Tiny
MIT
UPerNet is a semantic segmentation model based on the ConvNeXt-Tiny architecture, suitable for image segmentation tasks.
Image Segmentation
Safetensors
U
smp-hub
191
0
Upernet Convnext Base
MIT
UPerNet image segmentation model based on ConvNeXt architecture, suitable for semantic segmentation tasks
Image Segmentation
Safetensors
U
smp-hub
57
0
Upernet Convnext Xlarge
MIT
UperNet is a framework for semantic segmentation, utilizing ConvNeXt as the backbone network, capable of predicting semantic labels for each pixel.
Image Segmentation
Transformers English

U
openmmlab
659
2
Upernet Convnext Large
MIT
UperNet is a semantic segmentation framework combined with the ConvNeXt large backbone network for pixel-level semantic label prediction.
Image Segmentation
Transformers English

U
openmmlab
23.09k
0
Upernet Convnext Base
MIT
UperNet is a framework for semantic segmentation that uses ConvNeXt as the backbone network and can predict semantic labels for each pixel.
Image Segmentation
Transformers English

U
openmmlab
178
1
Upernet Convnext Small
MIT
UperNet is a framework for semantic segmentation that uses ConvNeXt as its backbone network, enabling pixel-level semantic label prediction.
Image Segmentation
Transformers English

U
openmmlab
43.31k
31
Upernet Convnext Tiny
MIT
UperNet is a framework for semantic segmentation that uses ConvNeXt as the backbone network, capable of predicting a semantic label for each pixel.
Image Segmentation
Transformers English

U
openmmlab
3,866
3
Featured Recommended AI Models